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A lack of suitable 3D content currently constitutes a major bottleneck for transferring the recent 
success of 3D cinema to our home TV. In this paper, we take a look at state-of-the-art techniques 
to generate 3D content from existing 2D or newly captured 3D content. In particular, we present a 
method to convert original 2D image sequences to 3D content by adding depth information with 
only little user support. Furthermore, we show results of a stereo algorithm which provides the 
basis for automatic conversion of stereoscopic film material for viewing on different types of 
displays. In this context, we also discuss the potential of inpainting techniques for filling in image 
regions that were originally occluded.  
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1. Introduction and Motivation 
 
The new generation of media displays focuses 
on moving from 2D to 3D. In this context, 
the entire processing chain of 3D content 
generation - from the acquisition of suitable 
film/video material to conversion routines for 
transmission and display on different types of 
3D devices - needs to be revisited 
(Mendiburu, 2009). The key idea behind the 
generation of 3D content is to be able to 
provide the viewer with an illusion of depth 
as seen in the real world. In this paper, we 
propose a comprehensive 3D TV content 
generation approach, covering its key 
components, namely creation of depth maps, 
depth-based rendering and interpolation for 
novel view generation.  We present state-of-
the-art techniques for the different 
processing steps and demonstrate high-
quality results obtained in experiments with 
our test data. 
 
In general, the stereoscopic depth experience 
emerges when watching two slightly shifted 
views of the same scene, each with one eye. 
In 3D cinemas, the separation of the two 
views is accomplished using special glasses 
that direct each presented view to the 
corresponding eye. The human brain 
processes these images yielding a depth 
perception by exploitation of the geometric 
differences (denoted as stereo disparities) 
between the two images. 
 
There are several ways for generating 3D 
content that can be viewed on stereoscopic 
devices. An obvious way would be to use a 
stereo camera during the original video 
shooting. In principle, the acquired stereo 
video (consisting of two synchronized video 
streams) could be displayed directly on a 

suitable stereo monitor. In many cases, 
however, further processing steps are 
required to adjust the stereo content to 
different types of displays and viewing 
distances. For example, a stereo video that 
had been shot for display on a 3D cinema 
screen would – in its original form - yield an 
uncomfortable viewing experience on a 
small-size mobile 3D display. The viewing 
freedom, encompassing the viewing distance 
as well as the position of viewing, plays an 
important role in determining the number of 
views required. Hence, a key requirement for 
3D content adaptation is the generation of 
novel views that simulate virtual cameras 
that were not available during the original 
video acquisition. A particular need for novel 
view generation comes up in the context of 
(multi-user) autostereoscopic displays, which 
rely on multiple views to enable glass-free 3D 
viewing. The related conversion procedures 
typically require the computation of a depth 
(or disparity) map as intermediate product. 
 
In many applications, the depth map is 
computed from two views of the same scene 
using stereo vision methods. However, if only 
one view is available, such as for existing 
monocular videos, 2D-to-3D conversion 
methods can be considered as an alternative 
solution. To compensate for the missing 
stereo information, the 2D-to-3D conversion 
typically relies on user input to make the 
problem tractable. In this paper we will 
present state-of-the-art solutions for both 
scenarios. 
 
An overview of the processing steps for 3D 
content generation is given in Figure 1. In 
Section 2, we present the principles of a 
stereo vision algorithm that automatically 
computes high-quality depth maps from 



	  

                          

	  
 
 

 
 
stereo images as input. Section 3 focuses on 
the alternative approach of a 2D-to-3D 
conversion technique that propagates depth 
information - given in the form of a few user-
scribbles on a monoscopic input sequence - 
to the entire video shot. The depth maps 
computed by these techniques are then 
utilized for novel view generation using 
suitable interpolation methods in Section 4. 
In this context, we address the need for 
image inpainting techniques in order to fill in 
regions that were occluded in the original 
video material. The results obtained in the 
different processing steps are discussed and 
illustrated using a variety of test images 
including a “Girls” sequence recorded in our 
lab. 
 
2. Stereo Vision 
 
The concept of stereo vision is to reconstruct 
3D information, using two images that 
capture the same scene, but are recorded 
from slightly different viewpoints. The key 
challenge in stereo vision is to compute the 
disparity map - that is, to find a 
corresponding pixel in the right image for 
each pixel of the left image. This problem is 
known as the stereo matching problem and 
represents a crucial step in 3D video/TV 
content generation. The simplest strategy for 
solving the stereo matching problem is a so-
called local approach. Here, a support 
(square) window is centered on a pixel of the 
reference (left) image. This support window 
is then shifted in the matching (right) image  

 
to find a point of maximum correspondence. 
As opposed to local approaches, global stereo 
techniques seek to apply an optimization 
scheme to the whole scene. Global 
approaches usually require much more 
computation time and are not further 
considered in the context of this paper. 
 
It should be noted that the computed 
disparity map, which encodes the pixel shift 
between left and right image, is closely 
related to the depth map. An image pixel 
with a high disparity value has experienced a 
large geometric shift between the two 
images, because it is located close to the 
(stereo) camera. Contrarily, scene points that 
are far away from the camera are 
characterized by low disparity values. For the 
sake of simplicity, we use the terms disparity 
map and depth map interchangeably in this 
paper, although they are actually inversely 
proportional. 
 
Traditional local stereo approaches apply an 
implicit assumption that all pixels within the 
support window are assumed to have the 
same depth (or, equivalently, disparity) 
values. This assumption is systematically 
violated in areas that are close to disparity 
borders (which often coincide with object 
boundaries.) As a consequence, the well-
known foreground fattening effect rises up. 
This foreground fattening effect represents 
the inherent problem of standard local 
methods. On the other hand, a precise 
reconstruction of the object outlines is

Fig. 1: 3D content generation process. 

Fig. 2: Support regions for selected windows. Bright pixels 
represent high support weights and dark pixels otherwise. Our 
segmentation method gives relatively low support weights to 
pixels whose disparity is different from that of the center pixel. 
Original “Street” image from (Richardt et al., 2010). 



                       
Fig. 3: Sample images and their corresponding disparity maps. a) “Street” image taken from (Richardt et al., 
2010). b) “Cones” image taken from (Scharstein, Szeliski, 2002). c) Frame taken from our live system (“Girls”). 
 
 
particularly important for 3D content 
generation, since the human eye is very 
sensitive to artifacts along object boundaries 
which prevent a clear 3D impression. 
 
In our algorithm, this problem is solved by 
explicitly identifying those pixels of the 
support window that are most likely to share 
the same depth value. For example, consider 
Figure 2 a) where we want to compute an 
“optimal” support window for the central pixel 
surrounded by a rectangle. In Figure 2 b), 
bright pixels represent pixels that are likely 
to have the same disparity values as the 
center pixel. Our method only uses those 
bright pixels in the correspondence search 
(matching process) and hence avoids the 
foreground fattening problem described 
above. 
 
The key question that we have to answer is: 
“How can we extract those pixels that lie on 
the same disparity with the center pixel?” We 
solve this problem by using the concept of 
self-similarity, i.e. pixels that are close in 
color and spatial distance to the center pixel 
of the support window are most likely similar 
in disparity (because they are likely to lie on 
the same object). This concept has originally 
been used in (Yoon et al., 2005), where the 
likelihood that two pixels have the same 
disparity value is computed by comparing 
their color values and spatial positions. These 
two cues (color and spatial distance) are 
motivated by the Gestalt theory. In our work, 

we introduce a third Gestalt cue, namely 
connectivity (Hosni et al., 2009). We state 
that two pixels should be connected in the 
image by a path along which the color does 
not change sharply. This connectivity cue 
leads to improved adaptive support weight 
windows and hence to improved matching 
results (with improved disparity maps). 
 
Examples of disparity maps that are 
generated by our stereo matching method 
are shown in Figure 3. As can be seen from 
this figure, our algorithm performs well in the 
reconstruction of disparity borders, while it 
also finds correct disparities for regions of 
poor texture, which are a challenge for local 
stereo methods. Our algorithm is evaluated 
by the Middlebury Stereo Vision Benchmark 
(http://www.middlebury.edu/stereo/), a well-
known trusted evaluation system (Scharstein 
and Szeliski, 2002). According to this 
evaluation, our algorithm currently 
outperforms all other competing local 
approaches. 
 
 
3. 2D-to-3D Conversion 
 
Conversion of existing monocular video 
material (conventional videos) to 3D content 
is a promising alternative to the production of 
3D media using stereo views (see Figure 1). 
Such 2D-to-3D conversion methods either 



Figure 4: Propagation and segmentation process. a) Keyframes of input video. b) User scribbles (black: back, 
light gray: front, white: unknown). c) Pixel-wise over-segmentation of a middle frame (bottom) and 
corresponding disparity map (top). White pixels have not been assigned a disparity yet. d) Graph-based 
segmentation of regions to super-regions (bottom) and corresponding disparity map (top). e) Assignment of 
disparities to the missing regions (top). Final disparity map after refinement step (bottom). Original video from 
(Richardt et al., 2010). 
 
 
automatically estimate the required disparity 
information by analyzing a video’s content or 
propagate disparities given by a user. While 
the first option limits the choice of video 
material (e.g. static scenes), the 
incorporation of user input provides more 
flexibility. In semi-automatic conversion 
techniques, the general approach is to define 
disparity values in key frames (e.g. with 
scribbles, see Figure 4 a)-b)), which are then 
propagated to the entire video sequence. 
Here, the main challenge is to minimize the 
time a user needs to annotate key frames 
and to obtain high-quality disparity maps. 
More precisely, the result should be 
temporally coherent (no flickering) and 
contain smooth temporal disparity changes of 
moving objects. Spatial edges in the disparity 
map should be consistent with the input 
video and maintain the disparity 
discontinuities at object outlines. 
  
The strategy of propagating sparse user input 
assumes that neighboring pixels that are 
similar in color, share the same or at least 
similar disparities. This concept is related to 
spatio-temporal video segmentation, where 
the goal is to group pixels that are similar in 
a certain feature space (e.g. color) into 
regions. Furthermore, segmentation provides 
additional information about object borders, 
which is often difficult to preserve (see e.g. 
(Guttmann et al., 2009)). Based on these 
observations our approach propagates 
disparities simultaneously with segmenting 
the input video. 
  
Our approach (Brosch et al., 2011) builds 
upon a graph-based video segmentation 
algorithm suggested by (Grundmann et al., 
2010), which we extend to incorporate depth 
information. The algorithm comprises two 

steps, a pixel-based over-segmentation 
(Figure 4 c)), and the subsequent merging of 
adjacent regions into super-regions (Figure 4 
d)). In the first step, the segmentation 
algorithm compares spatially and temporally 
neighboring pixels in a fixed order and 
merges them into regions, if they are similar 
in color. During this process, we propagate 
the disparity information derived from the 
user scribbles that were drawn on the first 
and last frame of the video sequence.  In 
case a pixel without disparity information 
merges with a pixel of known disparity, the 
known disparity value is propagated. To 
enable slanted surfaces and disparity 
changes in time, it is also possible to merge 
pixels with conflicting disparities. In this case, 
the original disparities of the individual pixels 
are kept within the merged region.   
 
In the second step, neighboring regions, 
which were derived in the previous step, are 
compared.  Again, similar regions are 
merged. Here, instead of expressing 
similarity by the pixels’ color difference, color 
histograms and per-frame-motion histograms 
are used (Grundmann et al., 2010). During 
this process, the known disparity values are 
further spread among neighboring regions, 
while suitable strategies are applied to 
resolve possible ambiguities in depth 
assignment.  
 
When applying this merging and assigning 
process iteratively, more and more pixels are 
assigned to disparity values (see Figure 4 a)-
d)). To speed this process up, we abort it 
after several iterations (e.g. 25) and assign 
the remaining regions by using the disparity 
of the most similar neighboring region (see 
Figure 4 e), top). As a result we obtain a full 
disparity video, which contains abrupt 



 
Figure 5: Depth propagation results. a) Keyframes and user scribbles (black: back, light gray: front, white: 
unknown). b) Example frames of obtained disparity map (black: back, white: front).  
 
 
temporal changes. To interpolate disparity 
changes over time, we apply a generalized 
version of an edge-preserving smoothing 
filter (He et al., 2010) on each segment 
independently. Thereby, we use a kernel 
diameter as large as the temporal extent of a 
segment. We additionally refine disparities at 
object outlines. Here, we again apply the 
generalized guided filter, but in this case with 
a smaller kernel (i.e. diameter of 3 pixels) 
and on the entire video sequence. As this 
filter is sensitive to fine image structures 
(e.g. hairs), it captures details that have not 
been visible before (see Figure 4 e), bottom). 
 
The algorithm described above delivers 
temporal-coherent disparity maps that 
contain smooth temporal disparity changes, 
while disparity edges at object borders are 
preserved. A more detailed evaluation 
performed in (Brosch et al., 2011) shows that 
our algorithm performs favorably in 
comparison to a state-of-the-art disparity 
propagation method developed by (Guttmann 
et al., 2009). In Figure 5, we present some 
results from the self-recorded “Girls” 
sequence, which demonstrate that our 
algorithm handles video shots that contain 
partial occlusions and motion. 
 
 
4. Novel View Generation 

 
As outlined in Figure 1, the generation of 
novel views that can be associated with 
virtual cameras not present in the original 
scene is a key component for generating 
high-quality and versatile 3D video content. A 
particular need for novel views comes up in 
the context of recent progress in the field of 
autostereoscopic displays. The idea behind 
multi-view autostereoscopic displays is to 
allow the consumer to have the same 
comforts as that provided by 2D TV 

presently; namely to be able to have a 
viewing position of choice and not to be 
encumbered by having to wear special 
glasses. 
 
In principle, multi-view autostereoscopic 
displays rely on multiple images of the same 
scene, taken from different viewpoints, to 
render a 3D picture to the viewer. The 
different images are mapped to different 
pixel columns on the display matrix in an 
interleaved way. Optical elements embedded 
into the screen then properly focus the 
individual images and direct them towards 
different viewing angles. As a result, multiple 
viewers gathered in front of the screen 
receive a 3D impression corresponding to 
their individual viewing positions, without the 
need for stereo glasses. 
 
A straightforward approach to render multiple 
views would be to interpolate between two 
existing (stereo) video streams. This 
approach is based on the motion 
compensation techniques used in (Jain and 
Jain, 1981). Similar methods have been used 
in the past, for example, by (Raya and 
Udupa, 1990) and (Saito et al., 1999). We 
illustrate the results of such an approach in 
Figure 6 where the left and right view of the 
Cones images pair (Scharstein, Szeliski, 
2002) are used to generate the central view.  
 
The algorithm starts by local block matching 
of the left and right frames to model the 
disparity in the frames. Linear interpolation is 
used to place the matched block from the 
right frame into the novel view. This process 
is repeated until the first version of the 
intermediate frame is obtained (Figure 6 a)). 
The novel view then undergoes an iterative 
refinement to fill in holes. This process 
involves obtaining intensity values from 
neighboring pixels as well as from the stereo 



                           
Figure 6: Interpolation results to generate novel views. a) Shows the novel view after the initial search for 
corresponding blocks. It contains holes (black). The final results after the refinement steps are shown in b). 
 
 
views. The final result of the refinement steps 
is shown in Figure 6 b).  
 
An alternative approach for novel view 
generation relies on disparity maps as 
generated in Sections 2 and 3. An original 
view along with its associated disparity map 
(“2D + depth”) can be used to synthesize 
high-quality new projections by applying 
suitable image warping and inpainting 
procedures, which we explain in the 
following. 
 

4.1.  Image Warping 
 
Image warping is the process in which the 
pixels of the reference view shift horizontally 
(assuming stereo pairs that have been 
rectified to the so-called epipolar geometry) 
to compose the generated view. The shifting 
distance of each pixel is equal to the value at 
this pixel position on its corresponding 
disparity map. The larger the disparity is, the 
more the pixel shifts. If several pixels shift to 
the same position, only the one with the 
largest disparity appears, because its 
associated 3D point is closer to the camera 
than the other ones and therefore occludes 
them. The disparity map itself can also be 
warped in the same way. An example of 
image warping is shown in Figure 7 a)-b). 
 
In the generated view of Figure 7 a)-b), we 
can see gaps in black, where no pixel shifts 
into. This is because those parts are occluded 
and, hence, invisible in the reference view. 
To complete the generated view, we have to 
fill the gaps up with information from their 
surroundings. With the gap filling, the 
occluded areas appear. Therefore, this step is 
called disocclusion. Small holes can be filled 
by applying median filtering on the color 
image and the disparity map. Larger ones 
(e.g. the black gaps right to the girl’s head 
Figure 7 a)) have to be handled with some 

more sophisticated methods, e.g. inpainting 
(see Section 4.2.). 
 

4.2. Image Inpainting  
 
The term inpainting is originally used to 
describe the artistic restoration process of a 
damaged painting or picture. In the digital 
world, this process is automatically 
performed by the computer. The inpainting 
algorithms are generally classified into Partial 
Differential Equation (PDE) based inpainting 
and texture synthesis based inpainting 
(Venkatesh et al., 2009). In PDE based 
inpainting, the colors surrounding the gaps 
are propagated across the boundaries and fill 
up the inside. The propagation process is like 
heat diffusion or fluid flow, so that the 
inpainting results are smooth. However, 
textures may be lost because of over-
smoothing.  In texture synthesis based 
inpainting, the target area is filled through 
texture replication. A texture can be copied 
from examples or generated procedurally 
from statistics over the whole image or a 
serial of images. The most popular texture 
synthesis approach is exemplar-based 
inpainting (Criminisi et al., 2003), in which 
the optimal exemplar is selected for each 
blank pixel by estimating the similarity 
between the template patch centered at the 
target pixel and the candidate exemplar. 
 
While conventional inpainting methods only 
make use of the color information, depth-
guided inpainting aims to improve the 
inpainting results by selecting exemplars 
under depth-constraints (He et al., 2011). 
This idea fits the application of disocclusion 
for 3D video well, as the disoccluded area 
should be the extension of its visible 
surroundings of some particular depth. To be 
more precise, the optimal exemplars for the 
gaps should be from the connected 
background, as the disoccluded regions in the 
generated view are the background in the 



              

 
 
Figure 7: Image warping and inpainting for an example frame (left) and corresponding zoom-in patches 
(right). The generated right view a) and disparity map b) contain holes (black). In c) large holes are filled by 
depth-guided inpainting. d) shows the original right view for comparison. 
 
 
reference view. Figure 7 c) shows the 
inpainted image generated by our algorithm. 
One can recognize that the textured 
wallpaper behind the girl’s head is completed 
and the texture is preserved as well. 
 
 
5. Conclusion 
 
In this paper we have reviewed a complete 
3D video/TV content generation system, 
which is an important requirement for the 
commercial success of 3D TV. We place 
emphasis on the key elements of a 3D 
content generation system - containing the 
creation of depth maps, depth-based 
rendering and novel-view generation - and 
how the individual parts work together. In 
addition to a state-of-the-art stereo 
technique which captures depth maps from 
two synchronized views, we have presented a 
2D-to-3D conversion method, which is able 
to create high-quality depth maps from only 
one view using sparse and comfortable user 
input. Both technologies have the potential to 
overcome the lack of available 3D video 
content, which presents currently a major 
bottleneck in the introduction of 3D TV. 
 
The latest generation of 3D autostereoscopic 
displays needs to generate novel views in 
order to create an enhanced depth viewing 
experience that can be enjoyed 
simultaneously by multiple viewers. In this 
context, we presented an interpolation 
technique to generate these intermediate 
views and demonstrated the results of a 

sophisticated inpainting method for filling in 
regions that were occluded in the original 
view. The suggested processing chain 
enables the generation of high-quality 3D 
content at reduced production costs, due to 
the comprehensive and flexible generation of 
depth maps and associated synthesized 
camera views. 
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